Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system
نویسندگان
چکیده
Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001.
منابع مشابه
Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection.
Peptidoglycan (PGN) is a major component of the bacterial cell envelope in both Gram-positive and Gram-negative bacteria. These muropeptides can be produced or modified by the activity of bacterial glycolytic and peptidolytic enzymes referred to as PGN hydrolases and autolysins. Some of these bacterial enzymes are crucial for bacterial pathogenicity and have been shown to modulate muropeptide r...
متن کاملP-17: Expression of Cell Surface Toll-Like Receptors in the Human Male Reproductive Tract
Background: Male infertility refers to the inability of a male to achieve a pregnancy in a fertile female. The root of many causes of infertility is miscommunication between immune and reproductive system. Male reproductive system is very sensitive and vulnerable, infections can hinder maturation and movement of spermatozoa lead to impaired fertility.All species need an immediate reply to the m...
متن کاملPeptidoglycan Recognition Proteins: Major Regulators of Drosophila Immunity
All eukaryotic organisms have an innate immune system characterized by germ-line encoded receptors and effector molecules, which mediate detection and clearance of microbes such as bacteria, fungi, and parasites. Vertebrate animals have, in addition to innate immune responses, evolved an adaptive immune system characterized by antibodies and T-cell receptors. Insects in general and the fruit fl...
متن کاملStructure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system.
Peptidoglycan (murein) is a major essential and specific constituent of the bacterial cell wall. Its main function is to protect cells against the internal osmotic pressure and to maintain the characteristic cell shape. It also serves as a platform for the anchoring of specific proteins and other cell wall components. This giant macromolecule is composed of long glycan chains cross-linked by sh...
متن کاملRequirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila.
Components of microbial cell walls are potent activators of innate immune responses in animals. For example, the mammalian TLR4 signaling pathway is activated by bacterial lipopolysaccharide and is required for resistance to infection by Gram-negative bacteria. Other components of microbial surfaces, such as peptidoglycan, are also potent activators of innate immune responses, but less is known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014